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Abstract

This paper discusses the application of the likelihood ratio gradient estimator (o
simulations of large Markovian models of highly dependable systems. Extensive
empirical work, as well as some mathematical analysis of small dependabili-
ty mndcls, suggests that (in this model setting) the gradient estimators are
not significantly more noisy than the estimates of the performance measures
themselves. The paper also discusses implementation issues associsted with
likelihood ratio gradient cstimation, as well as somc theo.etical complements
associated with application of the technique (o continuous-time Markov chains.
KEYWORDS: highly dependable syatems, likelihood ratios, importance sam-

pling, gradient estimators.
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1 Introduction

This paper discusses the-application of the likelihood ratio gradient estimator
to simulations of highly dependable systems. We helieve that this paper makes

the following contributions to the existing literature:

1. While the basis of the likelihnod ratio gradient estimation algorithm has
been known for some time (see, for example, [6], [7). 8], {20}, [22]), and
[23], much loss is known about the empirical behavior of the estimator in
practical problem settings. In this paper, we show, through:extensive ex-
perimentation (see Section 6), that the likclihnod ratio gradient estimator
is.an effective ool for measuring parameter sensitivity in the context of
Markovian models of highly dependable systems. Both-steady-state and
terminating performance measures were studied. The positive resulis that
we oblained for the steady-state gradient. cstimation problem are of par-
ticular interest, in light of the somev:hat pessimistic conélusions reached
in previous theoretical and empirical work (see, [or example, 7], [19)], and
[20]). Thus, the results obtained here.suggest that the steady-state likeli-
hood ratio gradient estimator can be quite eflicient when implemented in

an appropriate problem setting.

2. The paper describes one of the few successful implementations of sophisti-
cated variance reduction techniques within a widely distributed simulation
software package, namely the System Availability Estimator (SAVIZ) (see
[11] and [12]) developed withiz IBM. The vriance reduction technigues
that arc described within this paper have been implemented so as to_be

-invisible {0 the uscr.



. Because of the high degree of dependability of Lhe systemns typically simu-

Jated by SAVE, rarc event simulation techniques (specifically, importance
sampling) are used extensively within thz package (so that failures can be
obscrved). This paper describes how to combine likelihood ratio gradient

estimation and importance sampling.

. This paper shows how “discrete-lime conversion” can be applicd to the

steady-state likelihond ratio gradient estimator (see also [5] and [20]). This
method reduces variance by removing variability due to the exponential
holding time varinles assaciated with the continnous-time Markov chain

that is being simulated.

. The computational burden imposed npon SAVE by the variance reduc-

tion techniques and likelihond ratio gradient ectimator can be siguificant.
For example, the numerical functinn evaluations required to compute the
analytically-derived partial derivatives associated with the gradient esti-
mator are time-consuming. Section § describes various ideas used within

SAVY, to improve the computational efficicncy of the estimator.

. Certain theoretical loose-ends concerned with the likelihood ratio gradient

estimation technique are addressed within the paper. In particular, it is
shown-that for finile-state continunis-time Markov chains, the “amiabili-
ty" assumption described in [20] and uscd in [5] is essentially always valid
for rcasonable performance measures (sce the Appendix to this paper).
Also, it-is shown that “discrete time conversion” applied to our gradient

estimatlors is guaranteed Lo give a variance reduction.

This paper is organized as follows. Section 2 describes the basic mathemati-

cal modc) that is simulated by SAVE. In Sections 3 and 4, respectively likelihood




ratio gradicnt estimation for transient and steady-state performance measures
is discussed. Section 4.3 also discusses certain insights that were obtained hy
analytically analyzing the behavior of the likelihond ratio gradient estimator for
a couple of (very) small models. In Section 5, implementation issues are dis-
cussed. Section 6 is devoted to a description and discussion of the experimental
results obtained through extensive simulations of several large models having
more than a million states. Section 7 discusses future rescarch directions. The
concluding Appendix contains most of the theoretical material alluded (o in

Item G above.

2 Problem Setting

In this section we briefly discuss the mindeling problems being addressed by the
SAVFE. package [10] and describe (he basic mathematical model being simmlated.
We also describe various performance measures associated with the models we

consider here.
2.1 Modeling Highly Dependable Systems

SAVE has been designed to construct and solve stochastic models of fault-
tolerant computers. Faunlt-tolerant computing has been applied to two fun-
damentally different classes of applications. One deals with mission oriented
systems with high reliahility requirements, such as space computers, avionics
systems, and ballistic missilc defense computers (see [4]). For the mission to
succeed, the sysiem must not fail during the mission time. Hence, the prob-
ability that the system dnes not fail during the mission time, i.e. the system
reliability, is a mecasure of interest. Mean time to system failure is another mea-
sure that is used Lo evaluate such systems. The other class of applications deals

with continunusly operating systems with high availability requirements, such




as telephone switching systems, gencral purpose compnter systems, transaction
processing systems (e.g. airline reservation systems), and communication net-
work computers. For such systems, system failures can be tolerated if they occur
infrequently and they result in short system down times. For such systems, the
expecied fraction of time the system is operational, i.e. the system availability,
is a measure of interest,

From the modeling point of view, a system consists of a finite collection of
hardware and sofiware contponents, cach of which may be subjeet to failure. re-
covery, and repair. Software components in operation can also be modeled with
constant failure rates (sce [17]). Component interactions often have a substan-
tial effect on system availability and must therefore be considered in addition to
the individual component behavinrs, The state space size of such models grows
(often exponentially) with the number of components being modeled. There-
fore, SAVE provides a high level modeling language containing constructs which
aid in representing the failure, recovery and repair behavior of components in
the system as well as imporiant component interactions.

If time independent failurc and repair rates are assumed then » anite state
space, time homogeneous continuous time Markov chiain can he constructed an-
tomatically from the modeling constructs used to describe the system. Since
the size of Markov chains grows exponentially with the number of components
modeled, simulalion apprars to be a practical way for snlving models of Inrge
systems. llowever, the standard simulation takes very Jong simulation runs to
estimate availability and reliability measures hecanse the system failure event is
a rarc event, Therefore, variance reduction techniques which can aid in comput-
ing rarc-event probabilities quickly are of interest. Specifically, the Importance

Sampling technique has heen found to be most uscful to estimate the various




dependability measures (see [12]). In this paper, we consider the gradient esti-
mation problem for these measures. We usc one change of measure to compute
the gradient using the likelihood ratio gradient estimation technique. and we use
another change of measure (importance sampling) to compute these gradicnts

quickly.
2.2 Markovian Model

Suppose Y = {}, : &« 2 0} is an irreducible, continnons time Markov chain
with siate space 7 and infinitesimal generator () = {9(0.1,5) : i,j € F}.
where # is in somne apen sel. . We use the notation that Iy and Fp represent
the probability measure and expectation, respectively, induced by the generator
matrix . Q(#) for some value of . We assume ;lnai F can be partitioned into
two subscts: 5= QU F, where O is the set of up states, i.e. the sct of states
for which the system is aperational, and F is the sct of down, or failed, states.
We assume that the system starts out in the state in which all components arc
operatinnal; we label this stale as staie 0,

Let X = {Xa : n 2> 0} be the sequence of states visited by the chain
and t, be the time spent in cach state, where n 2 0. Alsn, we define X, =
(XasX1v.eer Xa). Recall X is a discrete time Markov chain (DTMC) with
transition matrix 1’(#) defined by (0,4, 5) = o(0,4,5)/9(0.i) for ¢ # 7 and
r(0,i,i) = 0, where ¢(0,i) = —q(0,4,7). Furtherinore, conditional on X, the
1,’s are independent exponential random variables for which the (conditional)
mean of &, is 1/9(0, X4).

Define {7, : n > 0] as the transition times of Y, ie. 7o =0, and T, =
to+ 8y ++++ sy forn > 1. Then define N(t) =sup{n 20:T, <t}.

Let T denote a stopping time satisfying assumption AS in the appendix.

Also, for any set of states A, we let o4 denote the tiine the CTMC first enters




the set A, ic. ag =inf{s > 0:¥,0 ¢ A,Y, € A}. Of particular intcrest. are
oo, which is the first return !.ime to state 0, and ng, which is the first entrance
time into the subsct F of failed states. Qur goals are to estimate (1) some
perforinance measure r() = Fy Z(0), where Z(0) is some (measurable) function
of Y and (possibly) 0, and (2) its gradient r'(0) = &r(0). By varying our choice

of the function Z, we can compute many different performnance measures.

2.5 Performance Measures

\We will be interested in two types of dependability measures associated with the
CTMC Y: transient neasures and so-called steady-state measures. Considering

the transient measures fiest, the interval availability, A((). is defined by

l ‘
A(l) = ‘;/-." Viv.eopds.,

This is the fraction of titne that the system is operational in the time interval
{0,1). We let
1{1) = Eqo[A(D))

be the cxpected interval availability and let
F(t,7) = Fe{A(1) < 1}

denote the distribution of availability, The relishility of the system is defined

io be the probability that the system does not fail in the interval (0, ¢):
R(‘) = ,"{a}‘ > '} = E.[, (.'>(!].

For steady-statc measurcs we assume that Y is irreducible, in which case
Y, = V as s — oo, where = denotes convergence in distribution and 1 is
a v having iic siéady-staic distithution = = Ix;¢ € F) (r solver the e-

quations xQ = 0). Notice that steady-state measures are independent of the
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starting state of the system; however, we will choose the fully operational s.
tate (i.c., state 0) to define a regenerative state for the system. Also, we
assume that when computing steady-state measures, we can express Z(f) as
Z(0) = limeoo }f;n J(0,%,)ds, where f(0,-) is a rcal-valued function on
which satisfies assumptions A7 and A8 in the appendix. By regenerative pro-
cess theory (see [2]), eur steady-statc measures take the form of a ratio of two

expected values:

Fal [y 1(0.3,)d]
Eyon) ’

I 1{0.8) = Jjicop. then Fy[Z(0)] is the long run fraction of time the system

r = Fal2(0) =

is operational and is calied the steady-state availability; which we denate by
A = limieo FolA(1)). We will sometimes find it convenient to consider the
expected anavailability U(1) = 1 = I(1) = 1 = Ep{A(t)] and the steady-state
unavailability, I/ = 1 = A. The problen ;v[ steady-state estimation thus reduces
to onc of estimating the ratis of two expected values. '

The mean time to failure (M1TTF), Fglar], is typically thought of as a
transicnt measure, since it denends on the starting state of the system (state
0), which is assumed tn be the fully operational state. A ratjo representation
for Egjnr] is found to be particularly useful and is given by

Eolnr] = E;,]min!ap,nin.
d{ar < an}

The derivation of this formula is given in [12). Thus, we can view estimating
Eslar) as a ratio estimation problem, where both the numerator and the de-
nominator are estimated using a regenerative simulation. Therefore, in Section 4
we consider the estimation of the mean time to failure (MTTF) together with
steady-state measures which are aiso (and more commonly) estimated using

regencrative simuiations.
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3 Estimating Transient Performance Measures

Recall that our goals arc Lo estimate r(0) = Fy7Z(#) and its derivative r'(0) with
respect to the parameter 4. In the casc of transient performance measures, we

assume that our function Z(#) has onc of the two following forms:
1. Z(0) = 15, where S is some (measurable) sct of events.

2. Z(M) = f‘;r J(0,Y,)da, where T is some stopping time satisfying assumnp-
tion A5 given in the appendix and f(#,.) is a real-valued fonction on I

satisfying assumptions A7 and AR in the appendix.

We define the “likclihnod™ of a sample path under parameter 4 as

N(T)

du(7,0) = [‘H g(0. X3) exp{-q(0. ,\'.)c.}l’(o..\',...\'m)]
k=0 -

- exp{=q(", Xney1 (T - Taem)}

and the likclihood ratio is given by

L(T,8,80) = dp(T'0)/du(T, 0n), (3.1)

where On is some fixed value of 8.

Our performance measure is given by
7(0) = E47(8) = E,,Z(0)1.(T.0,0,).

We call this transformation a “change of measure™ since we are now computing
the expectation based on a different parameter value. The validity of the change
of measure is discussed in {1] and {12]. By petforming the change of measure,
the expectation operator is now independent of the parameter 0.

If we formally diflferentiate this expfession, assumning that we can interchange

the derivative and expectation operators, we have that by applying the product




rule of differentiation,
r'((l) = F, 7' (M)L(T,0,00) + Ly, Z(”)L’(T, G,6,),

where Z'(0) = 0 if Z(7) has form 1 above, and Z'(0) = fOT J'(0,Y,)ds if Z(0)

has farm 2 ahove, and

N(T) ’ . ! a0 X
" n e ¢ X) _ o x4 POXe Nia)
vam={ 3 {q(o..\-.) A TS vy

- 7O Xy )T = Tvm) ] L{T.0,00).  (3.2)

The proof of the validity of the interchange of derivalive and expectation is
given in Theorem 1 in the appendix.

The terms simphify when we evaluate r'(0) at the point # = 0,,. In this casc,

we have that since L(7.0..00) = 1.

£'(0s) = Fa,Z' (1) + Fa, 2(00)1.'(T On, 0n) (3.3)
and
O0X8) i vrr s P00 Xes Xass)
1' 0 ‘0 = N(T) Q@ \Ya, g - '0.“\ { 0+ sd ks sV k41
HInb) = 2ant | e~ O % g0 X, Fa)
= ¢ (On Xna (T - Tnemy)- (3.4)

Note that il 7" is either the time of the first (ransition after a deterministic time
t or a hitting time (o a sct J*, the Jast exponential term drops out.

The stopping time, say T;, uscd in the Ukelihood ratio necd not be the
same as the stopping time, say T3, used for the function Z(0,). Ho. eor, we
always need to take 7y > 73, with strict inequality possible. For example, when
computing reliability at a time (, note that Z(0n) is Fi-measurable, while we can
use the Jikelihond ratio based on Fr,,,,,,, where Fq is the sigma-field generated

by the process up to time L.
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These results are similar to the results derived in In [20], only the special-
ization to Poisson processes is discussed. Also, the “amiability” assumption
discusacd in [5] and [20] holds in the current context, and cxamples of perfor-
mance measutes satisfying this condition are discusaed in Section 2.3 and in the

Appendix.
3.1 Importunce Sampling to Reduce Variance

We can now apply another change of measure to implement the importance

sampling to oblain
v'(00) = Fge 2'(00) 1T, 00,0°) + Fg- Z2(0,)1.'(T", 05,00)1.(7,0,,0°),  (3.5)

wherc 0° is the parameter value used for the importance sampling change of
measure. L(T,0,,0%) is the same as Equation 3.1 except with (8o,0%) playing
the rolc of (8,0,) (ss it shonld be). Note that we can use two different changes:
of mcasnre, i.e. (wo diflerent values of 8°, to estimate the two ‘expectations
on the right hand side of Equation 3.5. Also, the valuc of 6° used aficr the
k™ transition can depend on X;, the entire sequence of states visited up to
that point, and also on T3, the time of the k'™ transition. We call this method
“dynamic importance sampling” (DIS). These idcas arc discussed in Section 5
and also in [10].

We can actually separate the likelihood ratio into two different components,
the first including orly the transition probabilities of the embedded DTMC and

the sccond incorporating only the random holding times, i.c.
L(1,00,6°,0°°) = 1y(T,00,0°)12(T,00,0°"),

where

N(T) v v :
Ly(T.0,,6°) = T[] Pifo, X San) (3.6)

i P(0°\ X4y Xasa)
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N(7) . .
ve Q(oma\ »)cxP{—q(Go. .\5)(;}
2T, 00,0 = : 0
’7(T (i} ) g, q(OQt"\k)exp{_q(o.-‘ :\k)t*}
exp{-q(fo. Xnr 11 (T = Tv(my)}
exp{=a(?*, Xney+1 (T = Tveny)}

(3.7)

‘Thus, we can apply different changes of mnecasure to the two components of the
tikelihood ratie, which allows us to tailor cach change of measure for a specific
purpose,

Lewis and Bihn [15) presented an importance sampling technique for es-
timating (ransient measures. They apply “failure biasing™ to the cmbedded
NTMC; this canses failures to ocenr with higher probability and therefore quick-
Iy moves (hiases) the DTMC towards the set of failed states. This change of
measure is incorporated in the first component of the likelihood ratio 1y, They
also apply “lorced transitions™ to the holding time in state 0 (the state with all
components operational) to the estimation of reliability. This forces the next
compnnent failure to occur before time 1. Specifically, if X, = 0and 7, < ¢,
then the next holding time, £,4y is forced to be between 7ero and £ = T, by

selecting fa41 from the conditional density given by

. Aoc-hnlnn
h(l,.}l ':\u' "l) = 1- e-Ap(l—T.) '

where 0 < ty4) < t =T, and Aq is the total failure ratc in state 0. This change
of measure is incorporated into the second part of the likelihood ratio, La. The
simulation continues until time T = min(afg, N(1) + 1).

Note that h(le41|Xa,ta) is not posilive whenever the exponential density
is, and so the standard theory of importance sampling says that this is not a

legitimate change of measure. However, in this case h(lay1|Xa,2s) is positive

over that part of the sample space ({w : ar < t}) that counts, which is sufficient

{a2er [9]).
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4 Estimating Steady-State Performnance Mea-
sures

Recall that our gnal is io estimate r{0) = FyZ(0) and its derivative. For steady-

state performance measures, we consider Z(f) of the form

t
2(6) = Jim 3 /0 1(0,1.)ds,

where f(0,-) is a real-valued function on /7 satisfying assumptions A7 and A8
in the appendix. I we assume that the CTMC Y has finite state space 15 and
the transition matrix I’ for the embedded DTMC is irreducible, then we have
that ¥y = ¥ as t — oo. In this case, we definc our stopping time 7" to be the
time of the fiest return to the initial state 0, i.e. 7" = o4. Let 74 be the first
return time of the embedded DTMC to state 0. Since Y is a CTMC, 7' is a
regencration time. Tence, assuming that Ep|Z(0)] < oc, we can express r(f)

using the ratio formula

r(0)= EoZ(0)

EyT

where

Z7(0)

T

/ 1(0.)dn
(U

ro-1

Y 10,500
k=0

re-)

T = Z“.

[t 1]

We also have that the ratio estimator satisfies the following central limit theo-
rem:

Vm(im =) > N(0,0?)
ax m — oo, where fm = L 70, 21,;(M)/ LT,y Ti, Zrj(6)and T;, j = 1,2,...,

denole independent, identically distributed observations of Z1(0) and T, respec-

12




tively, and 2 = Var[77,;(0) - r7;)/ E|T;}. Sce {2] for further details.
If one formally differentiates the expression for r(6) by interchanging the

derivative and expectation, one obtains

u'(0u)1(00) - l'(0¢.)u(0(,)

'
T (0“) - 17(0") (4-')

where

w(f) = Eg¢Z7(f0)

1I'(0..) = l:;g,. Z;(ﬂn) + ,‘:Q,ZT(OH),/'(T. 00. 00)

0 = EoT

l'(()u) = Ea,,TL'(T.On.on)
and

ra—-1

7h(0n) = 3 1’00

'0- , . ! 0! 'l' .4'
L(T,00,00) = Y 900 X4) _ gy, xyy + D00 Ne Vi)

=0 q(0... X p) P(”m l\.h XH-I ) )

The proof of the validity of the interchange of the operators is given in the

appendix.

In order to construct confidence intervals for our estimate of £'(0), we need

an axpression for its asymptotic variance. This is given by
wod + [b%ﬂ],,;’ + fw}; + ",-:-0';’,
+2[h§-5ﬂa,.,, ~4oac - Froap (4.2)
U—r'ﬂvnc 71—’-;’-'-1",; + "f'ﬂcn]
where ¢y = Var(X), oxy = COV'(N,Y),
A = Z3(00) + Z21(00)L'(T,60,65) (4.3)

13




B =T (4.4)

C = Zr(ou) (4.5)
D = TL'(T.0a,00), (1.6)
and
a = [y A
B = Fa.B
vy = FaC
& = Ea,D.

A proofof the validity of the expression for the variance is given in [20]. Tlowever,

we give a simpler and cleaner proof in the appendix.
4.1 Conditioning to Reduce Variance

sonditinnal Monte Carlo is a (cchnique which can be used to reduce the variance
in simulations of CTMCx (Sec [3] and {13}). By conditioning on the embedded
DTMC X, we arrive at what is known as. the discrete time method, in which the
holding times, t, are replaced by their (conditional) means, 1/g(?, X,). There
arc two advantages of using this approach, First, since we replace the random
holding timex t, with their (conditional) means, we do not have to gencrate
exponcntial variates. Also, as discussed in [3] and [13], this transformation is
guaranteed to give a reduction in the variance of the estimate of r(0). We
also show that the transformation is guarantced to reduce the variance of the
estimate of £'(0).

Using conditional Monte Carlo, we obtain anather ratio formula

EyEy[Z7(0)IX] _ En|G(6)]

0= =B TIX] = FollI(8)]" (47)

14




where a straightforward calculation shows that

ro~)

GO) = Y g(0,%%) (4.8)
k=0
ro-1

ney = Y h(0,X:) (4.9)
k=0

g(0.5) = f(0.i)/q(0.%). ie &

h0,5) = 1/q(0,é), i€ )2

and =, is the first return time of the DTMC {0 staie 0.
In [6], it is shown that under certain conditions (viz., assumption A4 given

in the appendix) that

- E'ﬂ(;(”)il(f‘ho\”ﬂ)
T Fe, 1 (0)i(70.0,00)

r(0)
where I;('rn, 0,05) is the DTMC likelihood ratin, which is defined as

?o-l . .
3 - p 0| l\kt l\h+]
i.(70,0,00) = };[n —-ﬁ-———--—l,,( XXy (4.10)

A simple calculation shows that L(rn, 0,00) = Ep[1.(Ty,,0,00)|X]. Note that [,
is the same as [} defined in Fquation 3.6. Il onc formally differentiates this
expression by inlerchanging the derivative and expectation, one obtains

oy o 8 00)i(00) - i'(0u)a(8o)
r'(0a) = . \ (4.11)

where

i(0) = Fa,G(0o)
@'(0) = FEsG'(00) + E¢,G(06)1 (70,60, 00)
i(0o) = EoH(0)
i'(6) = EgyH'(00) + Eg,H ()L (70,00,6n)

15




and

G’(O(]) - 'il f'(0m o\.b )q(of)v 4\'k) - q'(O{), 4\1 )!(00' ‘\.k)

A 4.12
k=n g(0a, X4) ( !
rg—1 \
(0, .\5!
ll' 0) = _q( 01 - 4.13
(00) g 7(0c, X&) )
To~1 . Y
. — P'(8, N, Xat1)
t n” ‘0 = _J__O_.__.___. 414
L'(70, 05, 0a) ?:; P00, Xy Niean) (14

The proof of the validity of the interchange of the operators in this case is given
in [6].

Let a2 and @2 be the variances of the gradient estimators when using the
ratin formula obtained without and with conditional Monte Carlo, respectively,
i.e. o2, which is given in Fquation 4.2, is the asymptotic variance of the csli-
mator of Fqnation 4.1, and a2 is the asymptotic variance of the estimator of
Fquation 111, Then, we have that @3 < #2, which states that when using the
ratio forinula conditional Monte Carlo always gives rise to a lower asymptolic

variance constant (see Proposition 4 in the appendix).
4.2 Importance Sampling to Reduce Variance

As in Section 3.1, we can use importance sampling by applying another change
of mcasure. llowever, in this case since. we use conditional Monte Carlo to
condition oul the holding times in cach state when estimating steady-state per-
formance measurcs, the likelihood ratio only consists of its first component Ly,

given in Equation 3.6, or equivalently, /., given in Equation 4.10,
4.3 Two Simple Examples

In this section, we consider two simple availability examples. The first is a one-
dimensional birth and death process with three states, which was also analyzed

in [12], and the sccond is a two-dimensional five state birth and death process.
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Becanse of their simple structure, we are able (o dn an extensive amount of anal-
ysis on thesc models. Recall that we defined the sensitivity of a performance
measure with respect (o a certain parameter to be the product of parameter
itsell multiplicd by the gradient of the performance measure with respect to the
parameter. Therclore, a sensilivity measures the effect of relative changes to
paramcter values on a performance measure, and so relative changes in the pa-
rameters corresponding to the largest sensitivities will cause the largest change
in the performance incasure. We will show that when one sensitivily is much
larger in magnitude larger than another, its rclative accuracy is much greater
than that of the smaller sensitivity. In addition, we can estimate the sensitivi-
tics with the largeet arders of tnagnitude with ahout the same relative accuracy
as the regular estimmale, as long as each sample (c.g. a regenerative cycle in the
case of stcady-state estimation) consists of only a few transitions. This is true
in the highly reliable component situation which we consider in this paper. We
nmeasure the relative accuracy by the squared coeflicient of variation. Much of
the analysis was done using the symbolic manipulator Scratchpad [25].

We define the veclor of parameters  which we compute sensitivities with
respect to as the vector of all contimious-valucd parameters of the model. Note
that the above claims depend on the parameterization of the model. However, in
the reliability context which we are considering in this paper, there is a natural
parameterization of the model, which is Lo have # consist of the values of all of
the component Inilure rates and repair rates. With # defined in this manner,

the claims scem to hold.
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4.3.1 A Three State Example

The three state example can be viewed as a rcliability system in which there is
one type of component with redundancy of two and the components can fail and
be repaired. The components have failure rate A and repair rate 1. The state
space is = {0.1,2}. We assume that births correspond to failures and deaths
correspond to repairs so that state ¢ corresponds Lo having ¢ failed components.
We consider the system (o he aperational in states 0 and 1 but failed in state 2.

The transition matrix I of the embedded DTMC has the lollowing non.zero
entries: 1'(0,1) = P(2.1) = 1, I’(1,2) = A/(A + p), and I’(1,0) = p/(X + p).
Using the method of eonditional Maonte Carlo, we let Ii; be the inean holding
time in state £ Thus, by = 1/(2A); by = 1/(A+ pr), and by = 1/p. Since we are
working with highly reliable systems, we assume that A € . We can further
assume that p = 1, since this only fixes the {ime scale.

We are interested-in Lhe steady-state unavailability r, which is the steady-
state probability of being in the failed state 2. Recall that we can estimate
this quantity using the regenerative method and can express r as the ratio
E[G]/E[I1], as in Equation 4.7. In this example, we aet f(0) = f(1) = 0 and
J(2) = 1. We assume that state 0 is the regenerative state. The numerator in
onr ratin formula can be cxplicitly written as G = nphy, and the denominater
can bhe expressed as /1 = ho + hy + np(hy + h2). where np is the number of
times the failure state is reached in the regenerative cycle. Note that np has a
geometric distribution, so that Ejng] = A/ and Varlng] = MA + p)/p?. Thus,
E{G) = haA/p and E{ll} = (ho+ hy) + (k) + h2)A/p. As shown in [12], we have
that r = ©(A?) and

3)
)

CV¥r,m)= = -

VarlG —-rll] _ 1 0(
mr3(LH)?  m
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where C1?(r, m) denotes the asymptotic squared coefficient of variation of our
estimate of r after m regencrative eycles (we modify Knuth's ©-notation [14]
to mean f(x) = O(p{z)) if there exist constants €y and Cy such that for all =
sufliciently small, 0 < Cyg9(x) < f(r) < Cag(x) ).

Straightforward calculations show that the sensitivities ry = @(A?) and
r, = O(A?), where we usc the notation rg = #-8r/80. Using the asymp-
totic variance fromn the Central Limit Theorem lor gradient estimators from
Sectinn 1. we can arrive al the asymptotic squared coeflicicnts of variation of
our sensitivity estimates, which are given by C'V?(ry,m) = O(1/A)/in and
CV3(r,.m) = O(1/2)/in. AU of the variance and covariance terms in the
cxpression for the asymptotic variance of the gradionis were used in the caleu-
lations_in this example. 3t turns ont that the dominant terms in the expression
for the variance of the gradients arn-terms invalving the variances of the down
time in a cycle G and its gradicents,

Thus, when A € g, we have-that both of the sensitivities are of the same
otder as the regiilar estimate, and the relative accuracies of the regular estimate

and the sensitivities are about tlic same.

4.3.2 A Five State Example

The five siate example models a sysiem with two types of components, cach
of which has redundaucy of twn, There is also the added restriction that once
a component of one (ypu Inils, the components of the other type cannot fail
unti! the state with all components operational is reached. Thus the state space
of this example is £ = {(0,0),(1,0),(2,0),(0,1),(0,2)}, where in state (i, §),
i represents the number of failed componenis of type 1, and 3 is the number

of failed compnnents of type 2. We assume that the regenerative state is the
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state in which all componcents are operational. We consider the system to be
operational in states (0,0), (1,0), and (0, 1), but failed in states (2,0) and (0,2).
We let A; denoto the failure rate of component type ¢, and let 2 denote the repair
rale of both types of components. We assume that Ay € A, € p=1.

The transition maltrix of the einbedded D'TMC has the following non-zero

entries:
P((0,0).(1.0)) = A/(A 4+ Ag)
PULILO) = MO+ )
PLOR@0) = /(s + )
POONEI) = Aaf(N 4 )
- I'((O.!)..(O;Z)) = 4\7/(/\2410).

P(O.1.0.0) = #/(de +0)
P((2,0).(1.0)) = P((a2).(01)=1
Welet b abhn((‘ the moan’ltol(iing time in state (1, ]) Thus, hioy = 1/(2X+
22} by = 1/(Ar 4 1)y Byayy = 1/(A2 + )y and kg a) = la,2) = 1/n.
In this example, we st £(0,0) = 7(1;0) = f(0.1) = Oand £(2,0) = 1(0,2) =
1, Using the-ritio-formula-again to estimate the steady-state unavailability, we
have that the numerator can be explicitly written as

G.= Lix,m(1,m) Prlz,0 4 1(x,2i0,1)) n2h(o,2)s

and the denominator can be expressed as

Il = hom + lixsombae + koo +hon))
+  Ipxixtony (o + na(he,n + hoa)).
where X, is the first state visited by the embedded DTMC, ny i the number

of times state (2,0) is visiied in the regencrative cycle, and ng is the number
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of times state (0,2) is visited in the regenerative cycle. Note that conditional
on Xy = (1,0), n; has a geometric distribution, and conditional on X'} = (0,1),
ny has a geometric distribution. Thus, Eln |\ = (1,0)) = Ay /p, Var[n,|X, =
(1,0)] = A(A + 1)1, E[na]X) = (0,1)] = A2/n, and Var[n,]X) = (0,1)] =

Az2(Az + )/ 1. Thus,
AT 402

FG1 = o e

and
2(A¥ + I\g + (/\1 + t\y)[l):‘l- '12
20 + M) :

Therefore, assuming that Ay € Ay € p = 1, we have that r = ©(A?) and

VarlG —rll | 1
C12(r. =_.__L___.l=....(__).
(rem) = 3@y = mO\N

E[i) =

Straightforward caleulations show that the sensitivities ry, = O(A?) and
3, = O(A7 4+ Ag). Using the asymptatic variance from the Central Limit Theo-
rem ot gradient estimators, we can arrive at the asymptotic squared coeflicient

of variatinn of our sensitivity cstimates, which are given by
1 i
*2? - —
CVry,,m) = < 0('\1)

and

, bof 2
CV¥(r3y,m1) = =0 (',\g + A;,\; + '\M)'

We only used the terms involving the variances of the down time in a cycle and
its gradient in these calculations since, when Ay € Ay € g = 1, these turn ant
to be the dom?nunl terins as they were in the three-state example.

From this cxample, we see that when Ay & X & p = 1, the sensitivity
with respect to A; is much larger in magnitude than the sensitivity with respect
to Az, and the relative accuracy of the former is much better than that of the

latter.
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R Thus, we see that in these two examples the relative accuracy of the scnsi-
(et tivity with the larger magnitude is of the same order of the relative accuracy of
the regnlar estimate. Though these results were derived for simple examples, we

N can sce that this is also true for the models used in experimentation in Section 6

5 Implementation Issues ;

In- this section we consider the implementation of the different variance reduc- ;
tion techniques described in the previous sectiond. These techniques have been :
implemented in the SAVE package so ‘tlmt Inrge madels can be simulated. One ‘
salient feature of our implementation is that we use one simulation run for esti.
mating all the measures and sensitivities. Regenerative simulation is used with
the “all components operational” state as the iegencrative state. The event
generator aimulates only the embedded Markov Chain. For the steady-stale
measures we sccumulate functions of the mean holding times in the various {
strtes and alsn functions of the gradients of mean holding times and transi.
tion probabilities. For the transient measures .wc accumulate functions of the
sample holding times (from exponential diutilmtio;\s) in the various states and
also gradients of the transition probabilities and densitics of the holding times,
The likelihond ratio for transicnt measuren is different for each of the different
- ’ transient estimators allowing ns to tailor it for the specific application,

We have einployed various techniques in the implementation of the SAVE
package which allow the CTMC to be generated quickly. We do not gencrate
the entire state apace explicitly since the models which we solve using SAVFE can
have millions of states. Instead, we use arrays {0 keep track of the number of
opcrational and spare coinponents of each Lype and the order of components in

the repair quene, This information is sufliciant (o determine the state that the
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systen is in. In addition, arrays are nsed to store the total failure rate and total
repair rate of cach type of componcent. Also, we keep track of the sum of all
of the failure rates of all operational and apare components and the sum of all
the repair rates of components currently being repaired. Since each transition
typically aflects only one component (the program has been implemented to
allow for the possibility of 1he statuses of mare than one component changing
on a single transition, c.g. one component failme causing athers to fail also),
we are able to update the arrays and the two sums quickly. By having these
quantitics readily available, we can casily determine the transition probabilities
of the emhbedded DTMC and also the total rate out of a state.

The importance sampling for the einhedded. Markov chain is bascd on the
following heuristics. As suggested in [12), we need to move the system very
quickly to the sct of failed states I, and once F is entered, the importance sam-
pling should be turaed off so that the system quickly returns Lo state 0, the “all
compnnents operational” state. We achieve this by increasing the probability of
failurc transitions over repair transilions. This has been called “failure biasing”
in [15]. We assign a combined probability bias? to the failure transitions in
all the states where both failure and repair transitions are feasible. Individual
failure and repair transitions are sclected in the ratio of their rates given that a
failure or a repair is sel _tcd, respectively. We call this the Biaa1/Ratio method,
or simply the Bias! method. We have found (wo other methods useful for se-
lecting individual [ailure transitions, given that a failure has occurred. The first
is to usc a uniform distribution on the failure transitions, which has very good
perforimance for “unbalanced” systems, as shown in Section 6 and in {12]. We
call this the Bias1/Balancing method. The second is to give higher combined

probability, dias2, Lo those failure transitions which correspond to componen-
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t types which have at lcast one component of their type already failed. This
exhausts the-redundancy quickly and has much better performance for “bal-
anced” systcms, as shown in Scetion 6 and in [12]. We call this the Bias?/Bias2
mcthod.

For the steady-state unavailability cach regenerative cycle corresponds to a
sample. We usc either direct simulation or the D1S method given in Section 4.2
to cstimate steady-state unavailability and its sensitivities. For the mean time
to failure, a sample ends when cither the regeneraiion ocours or the system
enters ouc of the system failed states fromn the et . In the latter case, we
continuc-to simulate the embedded Markov chain wutil the regeneration occurs
before starting a new sample. This wastes only a few cvents as typically a
regenerative cycle is short (the nunmiber of events per cycle is appretimately
twice the avora.y' redundancy, which is typically two or three). Once again, we
use cither direct simulation or the DIS method to eztimate the mean time to
failure and its sensitivities. For the transient measures multiple regenerative
cycles may Le contained in a single sample. Morcover, & sample typically ends
cither when a failure occurs or when the time interval expires, which is usvally
in the middle of some regenerative cycle. As in the case for the mean time
to failure, we continue to simulate the embedded Markov chain until the next
regencration occurs hefore starling a new sample. Scparalc accumulators for
the appropriate likclihood ratios and their derivatives are maintained for cach
transient cstimator, time horizon of interest, and parameter a sensitivity is
compuled with respect to. Thus, all measures can be estimated simultancouxly
from a single simulation run.

In the SAVE package, the uscr is able to compute sensitivities of all of

the performance measures with respect to any continuous valued parametcer of
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the mndel, where a sensitivity of a performance measure with respect to some
parameter is defined as the product of the parameter itsell multiplied by the
gradient of the performance measure with respect to the parameter. In its most
general form, SAVE employs a symbolic differentiator to compute the derivatives
needed during the simulation. This allows the use of complicated expressions
to describe the parametcers of the system. For example, one could specify that a
failure rate of some component to be 54y 4 4434, and then compute the sensi-
tivity of some performance measure with respect to the parameter ;. However,
the computation of sensitivities is somewhat slow using this technique, with the
extra CI’U time needed to compute ecach sensitivity being about the same as
the time needed to compute the regular (non-gradient) perlormance icasure.
Therelore, we have emplayed special techniques in the implementation of the
SAVE package to allow the user to compute sensitivities with respect o certain
paramecters with Tittle extra computational effort. If the uscr desires to compute
scnsifivities with respect to only companent failurc rates and repair rates and
these rates are not themsclives functions of other parameters, then the addition.
al CPU time nceded is small. as shown in Scction 6.2.3. Note that when in
expressions for the gradient of a performance measure given Equations 3.3 and
3.4, the only derivative terms which we have to compute are Z2'(0) and 9'(0, 2, y)
(since both g(f, z) and P(A, 7, 2) can be expressed solely in terms of g(0, z,y)).
For the transient performance measures we consider in the SAVE package, we
have Z'(8) = 0. In the case of steady-state performance measurcs computed
in SAVE, we have that the role that Z(6) played in the transient measure case
has been replaced by G(0) and I1(#) since we use conditional Monte Carlo (sec
Scction 4.1), which depend on the paramcicer 0 only through ¢(0,z,y). Now

note that g(0. z, y) is an integer mnultiple, say k, of either a component failure
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rate or repair rate (where k is cither the redundancy of the ¢ ponent or the
numher of busy repairmen). So by only computing sensitivities with respect to
simple failure and repair rates, the derivative of ¢(0, =, y) is cither 0 or k, thus

allowing us to bypass the symbalic differentiator.

6 Experimental Results

In this section, we will discuss the resulis of simulations of two different models
in order (o analyze the behavior of gradient estimates via the likelihood ratios
method and to demonstrate the cffectiveness of different variance reduction
technigques. We cornpare the sensitivities Lo ihe regular estimates in many cases
in order to benchmark our resnits, where we define the sensitivity of a measure
with respect to a parameter to be the praduct of the gradient of the measure
with respect ta the parameter multiplicd by the value of the parameter itsell.
All numerical (non-simulation) and simulation results were obtained using the

SAVYT, package ([11]).
6.1 An n-component parallel systemn

The purpose of the first set of experiments is to examine the effect of the length
of the regenerative cycle on the variability of likeliood ratio gradient estima-
tors of steady-state performance mcnsun':s. We will discuss the results of some
simulations of an n-component parallel system, where we varied the numnber of
components n from 2 to 12, In order for the system to be operational, there
must be at least onc functioning component. The repair rate 1 was fixed at
1.0 for all values of n, and the values of the failurc rate A were varied so that
the actual value of the steady-state unavailability remained fixed at 0.001. For
each value of n, we simulated for 1,024,000 cvenis and formed cstimates of the

steady-steady unavailability and the sensitivities of it with respect to A. Table
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1 contains the values of the numnerical results of steady-state unavailability and
its sensitivity with respect to the failure rate A, and also their respective point
estimates and percentage relative hall-widths of the 90% confidence inlervals
obtained using direct sinwlation for each of the experiments. The percentage
relative hall-width of a confidence interval is defined to be 100% times the con-
fidence interval hall-width divided by the point estimate.

It is interesting tn note that for small values of n, the relative size of the
confidence intervals of the sensitivities are close Lo the relative size of the con-
fidence intervals of the estimnates of Lhe steady-state unavailability, However,
as the number of compnnents in the system increases, the relative accuracy of
the sensitivity estimates degrades. The reason for this is that the number of
events per regenerative eycle is increasing as the number of components in the
system grows since we have adjusted the failure rate in order that the value
of the steady-state unavailability remains constani. Since the gradient of the
likelihond ratin turns ont to be a swn of random variables, as the regencrative
cycles hecomne longer, we are suimming up more random variables, which in turn

leads to more variability.

6.2 Balanced and Unbalanced Systems

Thr next model we experimented with is a large computing system, whose block
diagram is shown.in Figure 6.2. This model is als discussed in [12] and [16]. We
use two different parameter scts to create a “balanced” and an “unbalanced”
system. In order for a systein to be considered balanced it must satisfy two
criteria. [irst, each type of component has the same amount of redundancy,
(i.c. the same number of components of a type must fail in order for the system
to become nonoperational, e.g. 1-out-of-2 of a type has the same redundancy

as 3-out-of-4 of another type). Also, the failure rates of all of the components
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Figure 3: A block diagram of the compuling system modeled.

must be of the saine order of magnitude. A system that is not balanced is called
unbalanced.

For a balanccd system we select two scts of processors with two processors
per sel. two sels of controllers with two controllers per set, and six clusters of
disks, each consisting of four disk units. In & disk cluster, data is replicated so
that onc disk can fail without affecting the system. The “primary” data on s
disk is replicated such that onc third is on each of the other three disks in the
same cluster. Thus one disk in each cluster can be inaccessible without losing
access Lo the data. The connectivity of the system is shown in Figure 6.2, We
assnme that when a processor of a given type fails, it has & 0.01 probability of
causing the operating processor of the other type to fail. Each unit in the system
has two failure moden which occur with equal probability. The failure rates of
the processors, controllers, and disks are assumed to be 1/2000, 1/2000, 1/6000

per hour, vespectively. The repair rates for all mode 1 and all mode 2 failures are
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1 per hour and 1/2 per hour, respectively. Campnnents are repaired by a single
repairinan whe chooses components at random fram the set of failed units. The
system is defined Lo be operational il all data is inaccessible to both processor
types, which means that at least one processor of each type, one controller in
cach sel, and 3 out of 4 digk units in cach of the six disk cluster arc operational.
We also assume that aperational components continue to fail at the given rates
when the system is failed.

We make minor changes to the above parameters’ settings in order to create
an unbalanced systemn. We increase the number of processors of each type to 4,
and douhle cach processor's failure rate te 171000 per hour, We decrease the
failurc rates of all other compnnents by a factor of ten. Tn this system, although
a processor failure is more likely to accur in a failure transition, it is loss likely
to cause a system failure due to the high processor redundancy. This is typical

bebavior for an unbalanced system.

8.2.1 Steady-State measures

In this scction we discuss the resuits of our experiments for estimating the
steady-state unavailability and the mean (ime (o failure and their sensitivities
with respect to the parameters rr2 (failure mode 2 repair rate) and cfr (disk
controller 1 failure rate). These twn parameters were selecled Lo demonstrate
that we can estimate the sensitivities with the largest magnitude with about
the samc relative accuracy as the regular estimates, and the sensitivities of s-
maller magnitude are nol estimated as preciscly, as shown by the example in
Section 4.3.2. Numerical (non-simulation) resulis for these measures and their
sensitivitics were obtaincd using the SAVE package [11). Since the balanced

system has a few hundred thousand states and the unbalanced system has close
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to a million stales, only bounds could he computed [16]. These bounds are very
tight and typically do not differ frmin the exact results significantly. We simulate
hoth the balanced and the unbalanced systems. The goal of the simulation ex-
periments is to demnnstrate that we can obtain estimates of cerlain sensitivities
that have approximately the same relative error as the regular estimate, Also,
we sce that the various variance reduction techniques have the same effect on
the sensitivity estimates as they do on the regular estimates. Significant vari-
ance reductions can be oblained using the Bios!/Rias2 methad for Lhe balanced
systems and Biaz1/Bolancing method for the unbalanced systems, as is shown
in [12). These resulis hold for both the regnlar estimates and the sensitivities.

Tables 2 and 3 show the results obtained for the balanced and the unhalanced
systems, respectively, We ran the simmlation long cnough so that the smallest
entry in the tables for the percentage relative half-widths of the 90% confidence
intervals was less than 5%. The percentage relative hall-width of a confidence
interval is defined to he 100% times the confidence interval half-width divided by
the point estimate. This corresponds (o approximately 100,000 events for cach
entry in Table 2 and 1,000,000 events for each entry in Table 3, respectively.
Based on empirical results obtained in {10], the values for bias7 = 0.5 and
bies2 = 0.5 were selected for DIS.

There are a {few imporiant poinis to note in the tables. For the balanced
sysiem, we used the Biasa?/Bina2 method, and Biasi/Balencing is uscd for the
unbalanced system. As is shown in [§0], these methods are most effective for
their respective models when estimating the regnlar (non-gradient) performance
mcasures. We can sce that this is also the casc for the scnsitivities since we
obtain estimates of the Inrgest aensitivitics that are about as accurate as the

regulat cstimate,
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The rclative precision of the regular estimates and of each of their respective
scnsitivities with respeet Lo rr2 are approximately equal, which agrees with the
analytic results we obtained from the simple examples in Scction 4.3.1 Also, as
claimed in Section 4.3.2, we do nnl ablain as accurate estimates for the sensi-
tivity with respect to ¢ffr since it is of smaller magnitude. 1t is also interesting
te note that the amount of improvement from importance sampling over direct
simulation in the sensitivitics is about the same as the improvement in the reg-
ular estimates. This is because the same likelihood ratio needed for importance
sampling is used in both the regular estimate and the sensitivities, and the like-
lihood ratin in both cases is multiplied by the accumulators at the end of cach
cycle.

Also nate Lhat the sensitivity estitnates with respect to e1/rin the unbalanced
system using dircct simulation given in Table 3 are’very poor. This is because the
valne of ¢1fr is much smaller than the value of parameter procfr, the processors’
failurc rate, and so evenis corresponding Lo failures of disk controller | arc

somewhat rare compared to failures of one of the processors. Therefore, we are

not able (o oblain aceurate results for both the point estimate and the variance

e 0 o

of the sensitivity with respect to c/fr. However. when using Bias!/Balancing,
we are able to oblain much better estimates of these quantitics.

We next performed coverage expcri.me.nts (sce c.g., [18]) to determine the
validity of the confidence intcrvals that are formed based on the asyinplotic
central limit theorems described in Section 4. Such atudies are important since
certain variance reduction techniques sometimes do not produce valid confidence
intervals, except for very long run-lengths (sce e.g., [18]).

We performed experiments on cstimates of the steady-stale unavailability,

U, and its sensitivities with respect to both rr2 and effr, denoted by U,,2 and
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Uei e, respectively, in the above described balanced system as follows. \We chase
three run lengths corresponding to small, medinm and large sample sizes, and we
considered two ways of estimating I/ and its sensitivitics: standard simulation
and the Bias1/Bias? method with DIS. For cach method and run length we
ran R = 100 replications and formed point estimates Uy,...,Un of the regular
estimate and Um. veerU,py for 0 = r£2 and c1fr, of the sensitivity estimates,
and 90% confidence intervals for all of these estitnates. We then calculated ihe
mean pereent relative bias (= 100% - (1/R) X.-n,,,(l:l; = W)U for the steady-
stale unavailability estimator, and likewise for the sensitivity estiniators) and
the standard deviation of this mean. Note that it an estimate is unbiased, then
its mean percent relative bias should converge to zero as R — oo. We also
caleulated the 80% coverages, which is the percentage of the (computed) 90%
confidence intervals that actually contain the true values of U, U,,2, and Ue 4.
respectively, I the confidence interval is valid, then by definition, the 90%
coverage should be equal to 90%.

We also computed the mean percent relative half width of the 90% confidence
intervals. For each replication, this relative valne is computed using the point
estimate and not the true value. The mean is computed over all replications
with a nonzero point cstimaic. The results are listed in Table 4. Note that.
ax also scen in [12], the estimates using direct simulation arc significantly more
biased than those using importance samnpling, and that its confidence intervals
are about an order of magnitude wider. Also note that the values of the relative
bias and rclative hall widths for the sensitivities with respect to rr# are about
the samec as those for the regular estiinate, whilc these values for the other sen-
sitivily are gencrally worse. This agrees with the results given in Section 4.3.2.

Furiheriore, for the amall run length, the coverage drops significantly below
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90% when using direct simulation. Using our variance reduction technique, all
the coverages are close to the nominal 90% value.

The good behavior of the regenerative-based steady-state gradient estimatos
described here can be expected to typically hold for the types of models gen-
erated by the SAVE package. Becausc the failure rates are usually orders of
magnitude smaller than the repair rates, regencrative cycles tend to he short,
with a typical cycle consisting of one failure transition and one repair transition.
Fren when using impoartance sampling, regencrative cycles typically consist of
only a few failure and repair transition since we turn off failure biasing once a
system failure oceurs in a cycle. As a consequence we found it unnecessary (o
implement alternative variance reduction techniques to be used for steady-state

regenerative gradient estimation in the SAVE package.

6.2.2 Transient Measures

Tn this section we discuss the results of onr experimenis for estimating reliability
and its sensitivity with reapect to both #r2 and c1fr. Recall that for transient
measures we not only want Lthe systemn to move quickly towards the set of system
failed states I, but also get there before the observation period expires. For
Markov chain simulations, these issucs arc (in some sense) orthogonal, since the
halding times that determine the hitting time are conditionally independent of
the embedded DTMC that is hiased towards hitting . We therefore use the
same (cchnique as in the steady-state casc (o bias the embedded Markov chain
towards the systein failed sct, in addition to another independent technigue
(c.g. forcing as discussed in Section 3.1) to rednce the variance due to holding
times in the various states. The Jikelihond ratios corresponding (o these two

aspecis of simulation arc conditionally independent and can be formulated as
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in Section 3.1 and in [12). The goal of the simulation is to study the relative
accuracy of the regnlar estimate versus its sensitivities and to compare the cffects
of the forcing technique on thesc quantities. We considered only the balanced
system. For cach measuze, we allowed cach method to run for 400,000 cvents.
The results are given in Table 5,

For all incthods, we notice that the confidence intervals are smaller for some
range of interinediale time periods and wider at the ends.  Also, the three
tables indicate that I’t;rcing is moat eflcctive for short time iatervals, These
characteristics are discossed in {12].

Lis interesting to note that the relative accuracy of the sensitivity estimates
with respect to rr2 are consistently slightly worse than that of the regular esti-
mate, which strays from the result that we obtained for the steady-state inea.
sures. This is becanse we are working with transient measures, The likelihood
ratio therefore includes terms for the (random) holding times. Thus, when we
compute the gradient of the likclihood ratio, we are including additional random
variables corresponding to the halding times in the sum, therchy increasing vari.
ability. It is also interesting Lo nole that the relative accuracy of the sensitivity
estimates degrades compared to that of the regular estimate as the time horizon
increases. This is because the length of each observation-increases as the time
horizon increases, thus increasing the number of random variables included in
the sun for the gradient of the likelihood ratio, thereby increasing the variance.

This is similar to the results from Lthe n-component paralic] system,

6.2.3 Timing Experiments

Finally, Table G shows the results from somne timing experiments which we per-

formed in order {0 detcrmine how much extra CPU time is required (o compute
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sensitivities. The experiments consisted of different simulation runs in which we
varied the number of sensitivitics computed and recorded the amount of CPU
time taken in cach run. Al of the experiments were carried out on an IBM
3090 computer using the SAVE package, simulating the balanced system with
the diaas/binsg (0.5/0.5) technique for 100,000 cvents. As one can see, there
is a fairly large fixed cost in CPU time for computing any gradients, but the
marginal cost in CPU time for computing each additional gradicnt is smail. 1t
is interesting Lo note that the additional time required to compute cight sen-
sitivitics is about the same as the amount of time needed to run SAVE when

compuling no gradicnts.

7 Summary and Directions for Future Work

In this paper we have shown that the likelihaod ratio gradient estimation tech-
nique can be an clective practical tonl for computing parameter sensitivities in
large Markovian models of highly dependable systemns. In fact, both our analysis
and our computational expericnce suggests that the gradient estitnates consid-
ered here are not significantly noisier than the cstimates of the performance
measures themselves. In addition to discussing implementation issues that arise
in calculating and computing such gradient estimators, we also show that the
derivative and expectation interchange implicit in obtaining the validity of the
estimators doces in fact hold for a wide class of performance measures associated
with finite-state continuous-time Markov chains.

A number of interesting research dircctions present themselves for future

work:

1. development of additional variance reduction techniques for the likelihood

ratio gradien! estimator;
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=,

2. an analytic prool, for the general Markovian model of a highly dependable
system, that the variability of the gradient estimator is roughly of the
same order as that of the performance measure itscll (thereby extending

the results of this paper heyond our current three and five state examples

given in Section 4.3).

3. extending the methnds of this paper to non-Markovian models, in which
the fajlure and repair times arc no longer necessarily exponential. This
will necessitate the deveicpment of eflicient non-regenerative techniques

for catimating steady-state gradinnts in a rare-cvent setling.

Acknowledgments., We would like to credit Adrian Conway for initial work
on combining likelihood ratio gradient estimation with importance sampling for

steady-state measures when using discrete-time conversion,
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8 Appendix

Now we will justily the interchange of derivalive and expectation. In order to

do so, we will make the following assumptions:

Al. State space E is finitc.

A2. Q(') is continuously differentiable for # € O.

A3. I'(0) is irreducible for 7 € O.

A4. T(0) = {(=,y): P(0,x,y) > 0} is independent of 8, for 0 € O.
A5. T is a stopping time satisfving the following two conditions:

.M {T>0)=1forall 0 O.
2, There exists some 20 > 0 for which the moment gencrating function
MY T)(2) of N(T') converges for all z € (~20,20) and all 6 € ©.

A6. Z(0) has one of the following forms:

1. Z(0) = 15, where S is some (measurablc) sct of even:

2. Z2(0) = In1 7,Y,)ds, where T is some stopping time satisfying as-
sumnption A5 and [ is a real-valued function defined on (O, ) satis.

fying assumptions A7 and AR,
AT |ifll = sup{lf(0.z)l: 0 € O,z € F} < oo.
AS. ||/ = sup{lf'(A,7)] : 0 € ©,7 € E} < 0.

Note that under assumptions A) and A3, our CTMC Y is a regencrative
process. Also note that when we cxpress a stcady-state measure r(6) using
the ratio formula, we have that r(0) is a ratio of two expectations of random

variables, cach having the second form of Z(0) given in assumption A6.
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Also, note that by assumption A1, we can let I' = I'(0), i.c. T(0) is indepen-
dent of 0.

The first condition of assumption AS is necessary to insure the validity of
the ratic formula. Also, there are numerons examples of stopping times which

satisfy assumption AS.

Proposition 1 Define 7' = Ty, for some delerministic time t, i.e. T is
the time of the first transition after time . Swppnsc asswmptions A1 and A2

hold. Then, T salisfics acanmption A5,

Proof. First, definc ¢* = sup{q(0,i): 0 € O,i € F} and N*(1) = sup{n >
0:43 4+ 415 <t}, where £} is an exponentially distribuicd random variable
with mean 1/q* for all k. By assumptions AV and A2, ¢* < oo. Therefare,
{N*(1) : t 2 0} is a Poisson process with rate g°. Let Af*(z) be the moment

generating function of N*(1). Then

M*(2) = o'~ < oo
for all finite t and z. Hence, N*(t) has a convergent moment generating fonction
for all finite ¢ and z. Now, Ip{N(t) > k} < P{N*(t) > k} for ali 0 € O, where
P.{-} is the probability measure corresponding to {N°*(t) : t > 0} (sec [21]).

Thus, we have that N(1) alsn has a convergent moment gencrating function for

all finite ( and 2. §

Proposition 2 Define T =1, where t > 0 in some deterministic time. Supposc

arsumplions Af and A2 hold. Then, T' satisfics nsaymption AS.
Proof. Since t < Ti(y+1, the result follows from Proposition 1. |

Proposition 8 Definc T =a, =inf{t > 0:Y,_ € A,), € A} for some sct of
states A, i.e. T is the hitling lime (0 some sel of states A. Supposc assemplions

Al - A4 hold. Then, T salisfizs asaumplion AS5.
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Proof.  Since 7' = inf{t : Y1 ¢ A,); € A} lor some set A, we have that
N(T)=inf{n 2 0: X, € A}. Let r € A. By assumptions A3, and A4, we have
that for cach y € E, therc exists an integer m(y, z) such that Pm#)(0,y,2) >
0, where I'*(0) is the k-step transition matrix of the cmbedded DTMC X. Let
m = max{m(y,z) : y € E,x € A}, which is finitc since |E] < 0o. Now we have

that forall r € A,

PAN(TY > miXo=1) € Pe{ Ny # 2150 = 4}

[ pM(y.')(o‘ %)
< n
where p = sup{l = " ™?)(0,y,7): 0 € O,y € F.,r € A}. By assumptions Al,

A2, and A4, inl{P(0,r.y):0€ O, (r,¥) €T} >0,and so p< 1.
Naw we have
Pe{N(T) > mn}
3" PN(T) > m(n = 1), Xpiaery = W} {N(? 1 > 1| Xo = y)

yeA

pz P‘{N(T) > M(" - ')y l\.m(n-l) = "}
y€A
ple{N(T) > m(n -1)}.

IA

By induction, we nbtain
Pe{N(T) > mn} < p".
So we have the mowent generating function

ic"r.{N(r) = n)

n=n

P {N(T) =0} + f‘, i e PUN(T) = nm + 1)

n=0) =]

h,.N(T)(z)

Po{N(T) = 0} + i P {N(T) > nm} ie:(=m+l).

ax0 =)

IA
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For 2 €0, we have that

MIT(E) < BN =0+ Y mP{N(T) > nm]en
< P{N(T)=0}+m i [Imm]n'

For z > 0, we have that

MY TUz) < P{N(T)=0}+ i mP3{N(T) > nm}et"*")m
< D{N(T) =0} + me*™ i [perm]".

"z
Hence, there exists some 20 > 0 such that M,N(T)(z) < oc for all z € (—2n.24)
andallfe 0. i

We now state a lemma,
Lemma 1 If asaumptions 41-A8 hold, then
FEsZ(0)* < o0

FaZ'(0)* < oo
Jor all k and all 6 € ©.

Proof. When 7(0) = I, the result obviously holds. So now assume Z(0) =
]: 1(0,Y.)ds. Then we have that |Z(7)] < |[F)|T and |Z'(0)] < ||f')iT. Now
assumplion A5 implies that FyT* < oo for all k and all 8 € ©, which, along
with assumptions A7 and A8, gives us our result. [§

Hence, we have that the performance measurces discussed in Section 2.3 sat-
isfy assumptlions A5-A8. Now we will justify the interchange of the derivative

and expectation.
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Theorem 1 If assumpliona 41 - A8 hold, then
d .
5 [n.,zm)r,a.o. o,,)]'m = Fa, 7' (80) + Eg, 2(0u)1L'(T, 00, B0).
Proof. To justify the interchange. we will show that the difference quotients
h='(Z (0 + R)L(T, 00 + h,0,) = Z(00))

are dominated by an integrable random variable. By the meau value theorem,

we have that the differerre quoticnt is equal to
Z'(n)IT\n, 00) + Z(n)1.' (11 n, 0.),

for some n € (00, 0a + D).
Define

Mol = sup{l'(8,#)i:10 - 0ul < h.r € F)
fl'/all = sup{la'(0,%)/a(0, 1) :10 - Ba| S h,r € E}
lla/a(@o)l = sup{lg(A =)/a(00.7)|: |0 - 04| < b,z € E}
llo = g()ll = sup{lg(d,z) - g(fa,#)]: |0 - 8ol < h,r € E}
\P'/r) = sup{P'(0,7,)/P(0,2,y) : |8~ o] < h,(z,y) €T}

We/r@all = sup{|P(0.2, )/ (B, 2, y)| 10 - 6| < by (z,w) € I'},

where I' = I'(0). By assumptions A1, A2, and A4, all of these terms are finite.

From Fquation 3.2, we have that L'(7T,n,0,) is equal to

M)
!"!I‘.l! . r"m.\'h 'i9) . . .
[E {9(0...\\',-) =q'(m Nj)t; + P(On..\',.-a\',u)} =¢'(n Xnerya )T - 7~(T))]
j=n

WYaXan)

[ S exmt~Gatn ) - a0 X)) RS

- exp{={g(m Xnrya1) = (80, Xn @)+ )T = Toery))

44




Now we can bound |L'(T,n,0,)] by

[(N(T) + 1)l fall + 1P P + BN )20 4 + ' (T - T~(r))]

Naf @MY exp o - o0 TP u)

+ exp{llg = g(9)I(T = Tw ()},

which can in turn be bounded by ¢, (h)d2(h), where

N(T)+)
by = (NTV+ )l 1P P+ S 4 (8.1)
y=0
) ! N(T)}+)
ba) = /a0 N @I xnln - ] Y, 0}
1111

Note that we can bound [Z(00)L'(T. 1. 0a)] by ¢(h) = |Z(0a)|d1(h)d2(h). So we
now want to show that é(h) is integrable for h sufficiently small. To do this, we
will shaw (hat there exists sninc 2o > 0 such that Afy(2), which we define as the
moment generating function of zﬂ_z) I+, converges for all z € (—2q, 20) and all
Ne0.

First definc ¢° = inf{q(0,7): 0 € ©,7 € E}. 'Then

N(T')+1

alofe " )

kx0

. N(T)+}
= Fs E'[cxp{z Y ¢.}

k=n

|

q 0, 1\-h ]
|1 ey -

r q. N(T)+2
[\q* -2

My(z)

al

N(T')+1
= [ H Iy [!'.“'
- k=h
N(T )41

I
1S
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for 2 sufficiently small since N(7°) has a convergent moment generating function
in a neighborhaod of 0 by assumption A5, Since M,N(T)(z) and My(2) both
converge in a neighborhood of 0 for all # € O, we have that N(T') and 2,’,”;,’,’ [
have finite momnents of all orders for all § € 9.

Now note that by assumption A2, |lg/9(0a)ll — 1, ||IP/P(a)]] — 1, and ||g -
9(0)]| = 0 as h | 0. Tlence, by repeated applications of the Schwarz inequality
and using Lemma 1, we have that ¢(h,) is integrable for some ha > 0 which is
sufliciently small. Now noting that for 0 < by < by, we have d(ly) < é(ha), and
so we can use ¢(ha) as our dominating random variable for Z(00)1/(T. n.0.).
Thus, we have shown that Z(,)1L'(7, 0, f) is integrable. Similarly, we can show
that Z'(n)L(T,n,0a) can also be dominated by an integrable random variable.
Henee, by noting that L(7,n,0,) ~ 1 as h | 0, the proof is complete, §

Now we will give a proof of the asymplotic variance of our estimator of /()

given in Bquation 4.1. Tn order to dn this, we need the following result (sce [21],

p. V1R, for the proof).

Theorem 2 (Central Limit Theorem) Let X;,i =1,2,..., ! . ~penden-
t and identically disiributed d-dimensionel random veclor with mean weclor
and corariance matrir T, and suppose g : R -+ R ia diffcrentiable af p. If
ElX\|)? < oo, then
Vala(X.) - alm)] = N(0,0%)
s n — 00, where
&
= gxi

ol = Vy([l)rEVg(ﬂ)

end Vg(.) is the gradient of g.
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Now we give a prool of the expression for the asymptotic variance of the

estimate of the gradient when using the ratio formmla.

Theorem 8 If asaxmptions A1 - A8 hold, then the arymplotic variance of the

estimale of r'(0) waing Fqualion 4.1 is given by Figuation 4.2.

Proof. We define the vector V = (A, B, C, D), where

A = Z5(0) 4 Z(0)L'(T.00,00)
B =T

C = Zr(0)

D = TL'(T 0000)

as in Fquations 4.3--4.6. In order tn apply Thearem 2, we first need to show that
By JIVII? < co. Assumption A5 and Lemma | show that 7', 77(8), and Z3.(7)
all have finite moments of all orders. Now note that [L/(T, 6,,00)| is bounded
by éy(h) for all h > 0, where ¢4(h) is defined in Fiquation 8.1 in the pronf of
Theorem 1. Since ¢;(h) has a noment generating function which converges for
all sufficiently small ki, we have that L'(T, 0, 0n) also has finitc moments of all
orders. Hence, by repeated applications of the Schwarz inequality, we have that
A, B, C, and ) all have finitc second moments, which implies Ey, || V]|? < oo.

In nrder to apply Theorem 2, we define g: R' — R as

ab— cd

g(a,b. €y 'l) = b2

(8.2)

The first condition of assumption AL assures that g is differentiable at the
point (@, 8,v,6). Thus, by computing the gradient of g and plugging in the
appropriate valucs into the expression for the variance given in Theorem 2, the

proof is complete. §
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Now we show thal we obtain better estimates of the gradients when we use
conditional Monte Carlo. Belore we prove the resull, we make some definitions.
We define the vector V = (A, B,C, D) as in the proof of Theorem 3, and we let
W = Ly, [VIX] = (4, B, C, D), where

A = EBaAIX] = G' () + G(06) 1 (0, 00, 00)
B = Fa,|BIX] = H{00)

C = By, [C1X] = G(0)

D = Fa[DIX] = 1'(00) + H(00) (70,00,00),

where G(0), 11(0), G'(0), 11'(0), and [.'(74, 06, On) arc defincd in Equations 4.8,
4.9, 412, 4.13, and 4.14, respectively. Let p = E,V = Fg,W. Then, by

Theorem 2, we have that

Vals(Va) - ()] = N(o.a)

as n — oo, and
va [.Q(Wn) - 9(1!)] = N(0,03)

as n — oo, where g is defined in Equation 8.2, and

V., = ;II-ZV.-
izl
W, = -’-i:w,-
i=!
= Var[Vg(lt)T(V-y)]
a3 = Var[Va(n)T(W - p)).

So we have that o7 and o} arc the variances of the gradient estimators when
using the tatic formula obtrined withont and with conditional Monte Catlo,

respectively. Then we have the following result.
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Proposition 4 #] < o?.
Proof. By noting that

V(i) (W = ) = Faa[Valn)T (V - n)IX).

we have the result by the principle of conditional Monte Carlo (see (3]). §




Number | Failure | Avg Number Stcady-State Sensitivity
of Rate of Lvents Unavailability w.rtl. A
Comps (A) per Regen Numerical Direct Numerical Direct
(n) Cycles __Result Sinulation Result | Simulation
2 0.0229 2.05 0.1000 x 10=2 | 0.0991 x 10~2 || 0.1954 x 10~2? | 0.1934.x 10~2
+ 1.6% + 1.6%
4 0.0R&4 2.63 0.1000 x 102 | 0.1014 x 102 || 0.3593 x 10~2 | 0.3559 x 10~?
+ 4.4% + 4.7%
6 0.1233 4.12 0.1000 x 10-2 | 0.0999 x 10~2 || 0.4901 x 10~2 | 0.4872 x 10~2
+ 6.5% + 7.3%
8 0.1375 7.53 0.1000 x 10-2 | 0.1007 x 10-2 || 0.5859 x 10~2 | 0.5677 x 10~2
+ 6.5% + 9.0%
10 0.1426 16.39 0.1000 x 10-2 | 0.500 x 10~2 || 0.6457 x 10~2 | 0.6230 x 10~?
+ 8.1% + 10.4%
12 0.1442 43.89 0.1000 x 10~2 | 0.1020 x 102 || 0.6755 x 10~2 | 0.6784 x 10~2
| $83% + 13.1%

Table 1: Fstimates of steady-state unavailability and sensitivities with relative 90% confidence intervals for an
n-component system using direct simulation (1,024,000 events)
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Performance I Regular Estimate
Mcasure Numerical Direct, Bias1/Bias2
Result Simulation 0.5/0.5)
Unavailability || 0.9309 x 10=% | 1.0171 x 10=* | 0.9395 x 10~%
+27.1% + 2.7%

MTTF 0.1637 x 10** | 0.1524 x 10*¢ | 0.1626 x 10*®
+ 25.7% + 2.5%

A et

(a) Results for regular estimates

Performance Sensilivity w.r.t, rr2
Mcasure Numnerical Direct Bias1/Bias2

Result Simulation (0.5/0.5)

Unavailability || -=.1252 x 10~ | —-.1256 x 10~1 | ~.1265 x 10~*
+ 33.0% + 3.3%

MTTF 0.1099 x 10*® | 0.0R79 x 10*% | 0.1109 x 10**
+ 33.1% + 2.6%

(b) Results for sensitivities w.r.t. rr2

J

Performance Scnsitivity w.r.t. clfr
Measure Numerical Direct Bias1/Bias2
Result Simulation (0.5/0.5
Unavailability || 0.2315x 10-3 | 0.3720 x 10~* | 0.2590 x 103

+ 64.1% + 6.3%
MTTF -.4066 x 10%5 | —.5893 x JO*5 | —~.4418 x 10+5
+ 58.6% + 6.0%

(c) Results for sensitivities w.r.t. clfr

Table 2: Estimates of steady-state unavailability, MTTF, and sensitivities with
relative 90% confidence intervals for the balanced system (100,000 events)
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Performance
Measure

Unavailability

Regular Estimate

Numerical
Result

0.6967 x 10~7

Direct
Simulation

0.4165 x 10~7

[
Bias1/Balancing "
0.5 |

0.6976 x 10~7

+ 164.5% % 2.4%
MTTTF 0.2)88 x 10** | 0.4703 x 10*® | 0.2183 x 10**
_ + 164.5% £ 2.3%
(a) Results for regular estimates
[ Performance Sensitivity w.r.t. rr2
Measure Numerical Direct Bias1/Balancing
Result Simulation (0.5)
‘Unavailability || —.9436 x 107 | —.7939 x 10-7 | -.9384 x 10~7
+ 164.5% + 3.1%
MTTF 0.1481 x 10** | 4555 x 10** | 0.1470 x 10*®
| |+ 164.5% + 2.4%
(b) Results for sensitivities w.r.t. rr2
Performance " Sensitivity w.r.t. clfr
Mcasure | Numerical Direct Bias1/Balancing
Result Simulation (0.5)

Unavailability “ 0.2324 x 10-7

-.3425 x 10™1°
+ 166.8%

0.2361 x 10~7
+ 6.0%

MTTF

~.7298 x 107

0.1104 x 105
+ 191.0%

~.7318 x 10+7

+ 5.2%

(c) Results for sensitivities w.r.t. clfr

Table J: Estimates of steady-state unavailability, MTTF, and sensitivities with
relative 90% confidence intervals for thc unbalanced system (1,000,000 cvents)
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=l-',vcnls - Steady-State UnnvaﬁaT;ilily —
per Direct Biasl/Bias2
- Rep Simulation (0.5/0.5)
Rel Bias Rel Coverage || Rel Bias Rel Coverage
(Std Dev) | HW (Std Dev) | HW |
2000 6.95% 144.40% 54% 0.74% 18.88% 85%
(12.82%) (1.20%)
20000 -3.91% 65.47% 90% 0.39% 5.99% 92%
(3.41%) (0.31%)
200000 1.29% 19.60% 96% 0.05% 1.90% 90%
_(1.09%) _ _ (0.13%)
(a) Results for steady-state unavailability
[ Events "~ Scnsitivity of unavailability w.r.t. rr2
per Direct Bias]/Bias2
Rep Simulation (0.5/0.5)
Rel Bias Rel Coverage u Rel Bias Rel | Coverage
(Std Dev) HW (Std Dev) | HW
2000 11.03% 155.96% 16% 0.37% 23.26% 84%
(19.15%) (1.54%)
20000 -1.86% 82.30% 84% 0.40% 7.46% 92%
(4.96%) (0.43%) '
200000 2.23% 25.27% 94% 0.03% 2.38% 86%
(1.45%) (0.16%)
(b) Results for sensitivity of unavailability w.r.t. rr2
Events Sensitivity of unavailability w.r.l. clfr
per Direct Bias! /Bias2
Rep Simulation (0.5/0.5)
Rel Bias Rel Coverage || Rel Bias Rel Coverage
(Std Dev) | HW (Std Dev) | HW
== — —
2000 20.73% | 432.06% | 11% 3.73% | 46.45% | 90%
(36.64%) (2.86%)
20000 -2.13% | 147.02% 62% -0.18% | 14.86% 82%
(10.66%) (1.04%)
200000 5.25% 56.79% 86% 0.10% 4.68% 95%
(3.62%) (0.27%)

(c) Results for sensitivity of unavailability w.r.t. c1fr

Table 4: Coverage experiments for estimates of steady-statc unavailability and
sensitivities on the balanced system (100 replications)
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& 33.4%

+ 40.8%

+ 15.0%

B Unreliability —
Time (t) Numerical Direct Simulation Bias1/Bias2 (0.5/0.5)
Result _gStnmj‘ard I Forcing Standard | Forcins
4 0.1528 x 10~4 [} 0.1034 x 10~* | 0.1481 x 10~* || 0.1583 x 104 | 0.1522 x 10~*
+ 116.3% + 23.9% + 7.0% + 1.4%
16 0.8734 x 10=4 || 1.0721 x 10~* | 0.9428 x 10~* || 0.8693 x 10~* | 0.8699 x 10~*
+37.7% + 22.8% + 3.3% + 1.3%
64 0.3804 x 10-Y || 0.3552 x 10" | 0.3421 x 10~% || 0.3801 x 10~3 | 0.3841 x 10~}
+ 24.0% + 21.9% + 1.8% + 1.1%
256 0.1552x 1072 || 0.1463 x 10-2 | 0.1578 x 10~2 || 0.1565 x 10=? | 0.1578 x 102
+ 16.8% + 19.9% + 1.5% + 1.0%
1024 0.6225 x 10~? {| 0.5598 x 10~2 | 0.6284 x 10~2 || 0.6275 x 10~2 | 0.6233 x 10~?
+ 14.9% % 16.0% + 4.9% + 4.3%
(a) Results for unreliability
| Sensitivity of Unreliability w.r.t, rr2 B
Time (t) Numerical Direct Simulation il Bias! /Bias2 (0.5/0.5)
Result Standard Forcin Standard Forcin
4 ~0.4353 x 10~% || ~0.1778 x 10~% | —0.5126 x 10-% || —0.4113 x 10~% | ~0.4280 x 10~%
+ 117.0% + 39.8% + 13.4% + 2.9%
16 —0.4886 x 10~* || -0.6391 x 10~* { —=0.4799 x 10-* || ~0.4845 x 10~* | —0.4853 x 10~4
+ 59.8% + 48.0% + 6.1% + 2.5%
64 ~0.2455x 10~3 || ~0.2084 x 10~% | -0.1679 x 10~? {| —-0.2420 x 10~% | -0.2467 x 10~}
+ 46.7% + 41.6% %+ 3.6% + 2.3%
256 ~0.1031 x 10~2 || -0.0928 x 10~* | —0.0877 x 10~2? || —0.1040 x 10~? | —0.1055 x 10~2
+ 35.0% £ 42.4% % 4.0% + 2.7%
1024 —0.4156 x 102 || =0,5200 x 10~2 | —0.4504 x 10~2 || —0.4220 x 10~2 | —0.3965 x 10?2

+ 12.6%

(b) Results for sensitivities of unreliability w.r.t. rr2
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P

~ Sensitivity of Unreliability w.r.t. cifr —
Thine (1) Numerical Direct Simulation Bias1/Bias2 (0.5/0.5)

; Result Standard _Forcing Standard |  TForcing

4 0.3788 x 10~5 {| ~.3493 x 10~7 | 0.4685 x_lo-s 1.4038 x 10~% | 0.3719 x 10~%
+ 116.7% + 59.2% + 19.5% + 4.3%

16 0.2168 x 10=1 || -.0108 x 101 | 0.2532 x 10=4 || 0.2118 x 10~* | 0.214] x 10~
+ 40.6% + 61.1% + 9.3% + 3.8%

61 0.9418 x 10-* || 0.8050 x 10-* | 1.0965 x 10~! || 0.9301 x 10~* | 0.9367 x 10~*
+ 74.2% + 63.9% + 5.5% + 3.5%

256 0.3853 x 10~ || 0.3057 x 10~% | 0.6703 x 10~3 || 0.3971 x 10~3 | 0.3955 x 10~?
+ 57.4% + 44.6% + 6.2% + 4.2%

1024 0.1542x 10=2 || 0.1415x 1072 | 0.2143 x 10~2 |{ 0.1247 x 10~2 | 0.1377 x 10~?
+ 60.6% + 48.7% + 27.1% + 22.8%

Table 5: Estimates of unreliability and sensitivitics with relative 90% confidence intervals for the balanced systen

(400,000 events)

(c) Results for sensitivities of unrcliability w.r.t. clfr
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Number of | CI’U Seconds
Sensitivites Taken
Computed

0 11.38

1 17.1R

2 17.92

4 19.00

8 22.60

16 28.74

Table 6: CPU times taken for computing sensitivities in balanced system using
hias1/biax2 (0.5/0.5) for 100,000 simulated cvenis
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"Abstract

This paper discusses the application of the likelihood ratio gradient estimator to
simulations of large Markovian modelr of highly dependable systems. Extensive
empirical work, as well ar some mathematical analysis of small dependabili-
ty models, suggests that (in this model setting) the gradient estimators are
not significantly more noisy than the estimates of the performance measures
themselves. The paper also discusses implementation issues associated with
likelihood ratio gradient estimation, as well as some theoretical complements
associated with application of the technique Lo continuous-time Markov chains,
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